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Abstract

  Ethanol is the most commonly abused drug in the world. Alcohol consumption increases 

a number of health risks, morbidity and mortality, and chronic and acute diseases. Some health 

risks include high blood pressure, stroke, liver disease, cancer, and can include mental health and 

social problems. Chronic alcohol consumption can lead to learning and memory problems, along 

with alcohol dependence. Additionally, alcohol consumption has an impact on ovarian reserve, 

steroid hormone production, sperm quality, fecundity, and fertility treatments. The purpose of 

this study was to analyze the effects of ethanol exposure on fertility of the N2 wild type as 

measured by the number of progeny along with the effects of chronic ethanol consumption on 

the mitotic germline of L4 Caenorhabditis elegans. In addition, the effects of alcohol 

consumption were analyzed in two mutant strains: GC1373and GC1374. GC1373 has additional 

mutations in the glp-1 gene and notch pathway. With mutations in these functionalities, the 

GC1373 strain has a reduction in the differentiation of all germ stem cells. GC1374 only has the 

reduction of function mutation, on the pk1417 allele, this strain only produces half the number of 

adult germline stem cells. Worms were treated with 0 mM, 200 mM, 300 mM and 400 mM 

ethanol concentrations for 7 days, after L4 stage is reached, and the effects assayed by progeny 

counting, ethanol absorbance, mitotic germ cell counting. Our results demonstrate that chronic 

ethanol exposure causes lasting effects on the C. elegans germline. Chronic ethanol exposure 

also decreased the progeny counts of the mutant strains GC1373 and GC1374. The results 

presented support previous work performed on various animal models indicating chronic ethanol 

exposure decreased the reproductive abilities; acute exposure, for 15 minutes or 120 minutes, 

does not cause lasting effects on the progeny of C. elegans nor on the birth rate of other animal 

models. Our data suggests that chronic ethanol exposure causes lasting damage to the C. elegans 
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germline. 

Key words: C. elegans, ethanol, fertility, disinhibition, stem cell.  
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Introduction

Overview and Life Cycle 

  Caenorhabditis elegans are small, free-living soil nematodes that are widely used as a 

genetic model system, as well as a model for studying aging (Tissenbaum, 2015), disease 

(Apfeld and Alper, 2018), developmental biology (Alberts, et al., 2002), neuroscience (Sengupta 

and Samuel, 2009) and more. At least 60% - 80% of human genes (Kaletta and Hengartner, 

2006), and 40% of the genes associated with human diseases have clear orthologs in the C. 

elegans genome (Culetto and Sattelle, 2000; Shaye and Greenwald, 2011). C. elegans have a 

rapid life cycle and are easily raised under laboratory conditions (Corsi et al., 2015). The worms 

appear semitransparent which makes possible observation of all cells in the living animal using 

differential interference contrast (DIC) microscopy (Corsi et al., 2015). 

A hermaphroditic C. elegans adult is capable of self-fertilization. The adults lay eggs at 

the 24-cell embryonic stage within an impermeable eggshell. Eggs hatch with larva at the L1 

stage of development. In culture, larva eat a lawn of OP50 E. coli bacteria as they develop into 

successive larval stages (see Figure 1). The L1 larval stage lasts for 12 hours after with the 

organism undergoes its first molt to emerge at the L2 larval stage. In the late L3/early L4 stage of 

larval development the somatic gonad precursor cells start to form the gonad sheaths, the 

spermathecae and the uterus. In the L4 stage, gonadogenesis, which begins around 7 hours post 

hatch, has completed. Meiosis in the germline commences at the L3/L4 adult molt stage where 

germline stem cells differentiate in spermatocytes. Sperm production ends in the late L4 stage. 

The remaining germline cells continue to undergo meiosis and strictly generate oocytes. At the 

end of each developmental phase the animal undergoes lethargus, a period of sleep-like inactivity 
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which ends with molting of the previous cuticle (Raizen et al., 2008). Once stages L1 through L4 

are completed, a mature hermaphrodite adult will lay its first eggs (Figure 1; Corsi et al., 2015).  
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Figure 1. The life cycle of C. elegans. An adult lays ex utero developmental egg which hatches 

after 9 hours and begins the L1 stage. If food sources are depleted or there is overcrowding, the 

worm will enter pre-Dauer as shown prior to L2. The stages of growth are L1 through L4 until a 

young adult and ultimately, an adult emerges. Image reproduced from WormAtlas with 

permission. 
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 Approximately 12 hours after the L4 animal molts, an adult hermaphrodite is capable of 

producing progeny for a period of two to three days or until all the sperm stored in the 

spermathecae have been used for fertilization. Overall, C. elegans cultures take about three days 

at 25°C to develop from fertilized eggs to adults capable of producing gametes.  

C. elegans Germ Cell Development 

  Wild-type C. elegans can be categorized into two sexual forms: self-fertile 

hermaphrodites and cross-fertile males. Males arise infrequently within a population (0.1% - 

0.2%) through spontaneous non-disjunction in the hermaphrodite germline. Under laboratory 

conditions, males are generated through heat-shocking worms in the L4 stage of development 

(Lints and Hall, 2009). Hermaphrodites are the predominate sex with a population of 

(approximately 99.5%). In terms of fertilization, hermaphrodites lay up to 300 self-fertilized 

eggs; however, if mated with males, hermaphrodites can produce approximately 1000 offspring, 

indicating sperm as a limiting factor in self-fertilization over their lifespan of 12 to 18 days 

(Riddle et al., 1997).  

  The gonad of a hermaphrodite forms an ovotestis hybrid that produces haploid amoeboid 

sperm that are stored within the spermatheca in the L4 and near the adult stage of the germline in 

which it switches over to producing much larger oocytes. Through meiotic prophase and 

gametogenesis, similar to an assembly line, germ cells switch from proliferative cells to meiotic 

development becoming sperm by the end of the L4 stage (Pazdernik et al., 2013). Therefore, the 

hermaphroditic adults are females whose gonads temporarily produce sperm before they produce 

oocytes (Corsi et al, 2015; Figure 2).  The distal end of the gonad is covered by a somatic distal 

tip cell that sheaths the mitotically proliferating germline, called the proliferative zone, as 

indicated by yellow in Figure 3. Just below the U-shaped region of the gonadal arm there are five 
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Figure 2. C. elegans anatomy differences. Major anatomical structures of a hermaphrodite (A) 

and male (B) from the lateral perspective are shown. A. Hermaphrodites have amoeboid sperm 

stored within the spermatheca and will switch over to oocyte production where they will develop 

embryos. B. Males will only have a gonad to produce sperm cells from their germline. Image 

reproduced from WormAtlas with permission. 
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pairs of gonadal sheath cells that surrounding the mature oocytes leading them towards the 

spermatheca which contains mature sperm (Hubbard, 2007; Pazdernik et al., 2013). The green 

region represents the germ cells in meiotic prophase I stage as they begin to transition through 

the U-shaped region of the gonad into developing oocytes. The developing oocytes, as shown by 

the blue/purple region, surrounded by sheath cells in pairs of thick and thin filaments. The sheath 

cells contract to drive ovulation towards the spermatheca. The darker blue region indicates the 

spermatheca proceeded by the clear embryos within the uterus (Pazdernik et al, 2013).  
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Figure 3. C. elegans schematic of adult hermaphrodite and gonad development. The diverse 

colors indicate the areas of gonadal development. Through an assembly line like manner, germ 

cells switch to sperm while remaining cells that switch in the L4 stage and adulthood will 

become oocytes. Image reproduced from WormAtlas with permission. 
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Ethanol Exposure, Reproduction, and Infertility 

  Alcohol consumption in humans can result in serious health problems including 

alcoholic-related liver disease (ALD) (Tan et al., 2020), alcohol misuse disorder, and infertility. 

Both chronic and acute ethanol exposure affect ovarian reserve (Li et al., 2012 ), steroid hormone 

production (Srivastava et al., 2015), sperm quality (Grover et al., 2014), fecundity and the 

effectiveness of assisted fertilization (Rooney and Domar, 2014); Van Heertum and Rossi, 

2017).) Alcohol is a well-studied compound with a broad range of physiological and behavioral 

effects on animals and humans alike (Bettinger et al., 2004). Models such zebrafish and rat have 

been used to look at the effects of chronic and acute ethanol consumption.  

  Zebrafish studies have reported the effects of both chronic and acute alcohol exposure on 

embryonic development and adult behavior. A negative impact of chronic alcohol exposure on 

fecundity was found in both male and female parents (Dewari et al., 2019). Ethanol exposed 

males displayed severe effects of chronic ethanol exposure on fecundity in comparison to their 

female counterparts. Fecundity is the measurement of fertility and is defined as the physiological 

maximum potential reproductive output of an individual over the course of their lifetime 

(Bradshaw and McMahon, 2008). Ethanol-exposed parents had a decrease in fecundity when 

placed in 0.5% ethanol infused water. Chronic alcohol exposure significantly decreases fecundity 

and negatively affects reproductive capacity of both parent zebrafish. When zebrafish are 

withdrawn from alcohol, they completely recover fecundity. 

  Similarly, rodent models show behavioral changes when exposed to chronic high doses at 

all steps of gestation (Schambra et al., 2015). Akomolafe and colleagues (2017) found rodents 

containing high blood ethanol content produced fetuses with a variety of defects. The study 

found that after 21 days of chronic ethanol exposure; prostate gland antioxidant enzyme, seminal 
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vesicle, epididymis, and testis activities decreased in ethanol-treated rodents in comparison to the 

normal controls. Alcohol exposure has been shown to induce changes in the epigenome of sperm 

in exposed male animals, and these epimutations are inherited in the offspring (Chastain and 

Sarkar, 2017).  

  In C. elegans, exposure to chronic ethanol delays the ability of egg-laying and results in 

fewer eggs being laid by a single parent worm (Davies et al., 2004). In over 40% of exposed 

worms infertility is caused by the failure of worms to lay fertilized eggs so that offspring hatched 

within the parent's body. Chronic ethanol exposure directly impairs the egg-laying ability of the 

worms, but not the egg's viability. Another study determined that chronic ethanol exposure 

during larval development not only decreases the reproductive fecundity and longevity of the 

parent worm, but also delayed physical growth and onset of reproductive maturity along with 

overall development (Davis et al., 2018). In the same study, acute exposure at various periods of 

development resulted in decreased probability of exposed eggs hatching. The progeny capable of 

hatching displayed physical dysmorphologies. Davis and colleagues reported a significant effect 

on the reproductive abilities of multiple models due to chronic ethanol exposure. Acute exposure 

to ethanol results in dose-dependent decreases in the rates of locomotion and egg laying (Davies 

et al., 2015). 

Ethanol and Signaling in C. elegans  

  Ethanol exposure modifies the expression of genes and methylation profiles in embryonic 

stem cells (DiRocco et al., 2019). Human embryonic stem cells, particularly those that 

differentiate into hepatocytes, are impaired by alcohol-mediated inhibition of the mitogen-

activated protein kinase and extracellular signal regulated kinase (MAPK/ERK) along with the 

WNT signaling pathways. The MAPK/ERK signaling pathway takes part in integrating the 
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external signals from the mitogens such as epidermal growth factor which promotes cell growth 

and proliferation in many mammalians cell types (Zhang and Liu, 2002). The WNT signaling 

pathway regulates cell fate determination, cell migration, cell polarity, neural patterning, and 

organogenesis during the stages of embryonic development (Komiya and Habas, 2008). Ethanol 

exposure stimulates the gene expression changes in the human embryonic stem cell derived 

cortical neurons.  

  As shown in Figure 4, ethanol can function as a solvent for carcinogens to enter cells. 

Tumor cells begin to form as ethanol increases the activation of multiple pro-carcinogens present 

in alcoholic beverages (Seitz et al., 2007). As ethanol oxidizes and binds to proteins forming 

mutagenic adducts which ultimately leads to the immune suppression that allows for an easier 

disperse of tumor cells. However, cancer stem cells have the ability to initiate the growth of 

tumorigenic stem-like cells and drive tumor growth (Di Rocco et al., 2019). These cells are 

similar to embryonic stem cells as they have the capability to self-renew and to differentiate into 

multiple cell types. 

  mTOR-mitochondria-ROS plays a key role in regulating stem-cell quiescence and self-

renewal. When mTOR affects the stem cells, it leads them to impaired differentiation. It has been 

noted that ethanol exposure activates the NLRP3 inflammation in induced pluripotent stem cells. 

Inflammation has long been known to damage tissue through alcohol-mediated means. It is 

important to note the role of the mTOR pathway when influenced by ethanol leads to impaired 

differentiation and stem cell failure (Di Rocco et al., 2019). 
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Figure 4. Mechanisms indicating the effect of ethanol on a variety of cell processes. Ethanol is 

processed by alcohol dehydrogenase to acetaldehyde, a carcinogen, which binds to DNA. After 

Seitz et al., 2007. 
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Intoxication and Disinhibition in C. elegans  

 Intoxication is defined as clinically significant behavioral or psychologic changes 

following the use of a substance (Byrne and Kirschner, 2018). Disinhibition is defined as 

normally suppressed behaviors that are displayed following intoxication (Topper et al., 2014). 

Rodent studies have reported disinhibition responses to ethanol such as altered locomotor 

patterns, including transient increases in total movement during acute intoxication as well as 

increased grooming behaviors and overall movement attributing by the lack of coordination 

caused by ethanol consumption (Topper et al., 2014). As the levels of ethanol concentration 

increase so do the levels of disinhibition which is also noted in other studies regarding C. 

elegans. Studies found when exposed to 500 mM of ethanol, the C. elegans had a decline in 

locomotion and other factors, which ultimately lead to immobility after 30 minutes (Davies et al., 

2015). Similarly in rodent models, animals exposed to isolation stress displayed anxiety 

behaviors as indicated by reduced time spent in plus-maze tests. Consumption of ethanol relieved 

anxiety behaviors (Pohorecky, 2008).  

Goal of the Current Work 

  It has been well established that chronic, as well as acute, alcohol exposure damages 

tissues and impedes organ function; however, the role of ethanol exposure and its deteriorating 

effects on stem-cell properties and population have just begun to be investigated in worms. It has 

been noted that alcohol susceptibility can be dependent on target cells which can be influenced 

by the dose along with the duration of exposure. The goal of the current work was to analyze the 

effect of ethanol exposure on the mitotic progenitor germline in C. elegans. 
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Methods

NGM Culture 

  C. elegans stocks were obtained from the I Genetics Center (University of Minnesota) 

and maintained using standard procedures. The strains used in this study were: N2, GC1413 rrf-

1(pk1417) I; naSi2(mex-5p::H2B::mCherry::nos-2 3′UTR) II; teIs113(pie-1p::GFP::H2B::zif-1 

3′UTR) V , GC1373 rrf-1(pk1417) I ; glp-1(e2141) III; hjSi20 [myo-2p::mCherry::unc-54 

3′UTR] IV ; zuIs70 [end-1p::gfp::caax; unc-119(+)] V , and GC1374 rrf-1(pk1417) 

I; hjSi20 [myo-2p::mCherry::unc-54 3′UTR] IV; zuIs70 [end-1p::gfp::caax; unc-119(+)] V.  

  C. elegans were maintained on Nematode Growth Media (NGM) agar plates at 25 

degrees C. NGM agar stock was made by combining 2.25 g of NaCl (US Biological, Salem 

MA), 12.75 mL agar (US Biological, Salem MA), 1.95 g peptone (US Biological, Salem MA) 

and 750 mL of distilled H2O, then swirled to mix thoroughly. The media was autoclaved for 40 

minutes and cooled for 15 minutes. Once cooled, 18.75 mL 1M KPO4 buffer pH 6.0 (108.3 g 

KH2PO4, 35.6 g K2HPO4, 1 L H2O) (US Biological, Salem MA) was added directly to the media 

using a serological pipette. Lastly, 750 μL 1M CaCl2, MgSO4 and 5 mg/mL cholesterol were 

added. Using semi-sterile procedures, stock plates were poured by pipetting 8 mL of media into 

35 mm plates 12-well plate (3 ml/well). The plates were kept at room temperature until solidified 

approximately 24 hours. Once solidified, they were kept in sterile bins at 4°C.  

  

http://www.wormbase.org/db/get?name=WBGene00004508;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004508;class=Gene
http://www.wormbase.org/db/get?name=WBVar00239368;class=Variation
http://www.wormbase.org/db/get?name=WBTransgene00025389;class=Transgene
http://www.wormbase.org/db/get?name=WBTransgene00007730;class=Transgene
http://www.wormbase.org/db/get?name=WBGene00004508;class=Gene
http://www.wormbase.org/db/get?name=WBVar00239368;class=Variation
http://www.wormbase.org/db/get?name=WBGene00001609;class=Gene
http://www.wormbase.org/db/get?name=WBVar00144590;class=Variation
http://www.wormbase.org/db/get?name=WBVar02143653;class=Variation
http://www.wormbase.org/db/get?name=WBTransgene00009906;class=Transgene
http://www.wormbase.org/db/get?name=WBGene00006843;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004508;class=Gene
http://www.wormbase.org/db/get?name=WBVar00239368;class=Variation
http://www.wormbase.org/db/get?name=WBVar02143653;class=Variation
http://www.wormbase.org/db/get?name=WBTransgene00009906;class=Transgene
http://www.wormbase.org/db/get?name=WBGene00006843;class=Gene
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Strain Maintenance 

Strain Description 

N2 Wild type C. elegan strain 

GC1413 The mutant strain contains reduction of 

function mutation at the pk1417 allele; RNAi 

is most impactful in the germline, contains 

germline and germline stem cell markers. 

GC1373 The mutant strain containing a reduction of 

function glp-1/Notch pathway at the pk1417 

allele. 

GC1374 The mutant counterpart of GC1373 containing 

only a reduction of function mutation at the 

pk1417 allele. 

Culture Maintenance 

  Each strain was maintained at 20°C for 24 hours. One strain of C. elegans was used per 

well plate. Lab conditions included feeding of OP50 E. coli bacteria. Serological pipettes were 

used to seed the E. coli OP50 liquid culture. Luria Broth (LB) is a nutritionally rich media used 

for bacteria culture. LB was made from 1.55 g of Luria Broth powder (U.S Biological) dissolved 

in 100 mL of deionized H2O. The media was autoclaved for 30 minutes to sterilize. After 24 

hours, the LB media was inoculated with OP50 E. coli and incubated at 37°C for 24 hours.  

  A nickel-sized amount of E. coli was added per 35 mm petri plate and one drop was 

added per well. The plates required 24 hours at room temperature to set and form a lawn of 

bacteria on top of the NGM agar. The C. elegans were added directly onto freshly made plates 

and stored at 20°C to allow the worms to crawl and procreate. The remaining plates were stored 

at 4°C in sterile plastic storage boxes for up to 2 to 3 weeks. A picking method, which uses a 

worm picker to pick single worms on a pasture pipette with a platinum wire tip, was used to 
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transfer individual worms to designated plates. Chunking was used to maintain overall strains 

throughout the duration of the experiments to have a multitude of worms on hand. 

Ethanol infused E. coli  

  The NGM agar plates were seeded with OP50 bacteria and set to dry for 24 to 48 hours, 

depending on the amount of lawn growth. The ethanol infused agar plates were optimized by 

calculating an appropriate dosage per mM of ethanol in 8 mL of NGM plates. The negative 

control plate had 0 μL/8mL; while the remainder of the amounts per concentrations were 94 

μL/8mL, 140 μL/8mL, and 187 μL/8mL, respectively. The ethanol was micropipetted 

surrounding the OP50 E. coli lawn to absorb and incorporate with the worm food at each 

concentration. Approximately, 5 to 20 plates were used per individual trials at various 

concentrations of ethanol, allowing 2 hours for the ethanol to be thoroughly absorbed into the E. 

coli. 

Chronic Ethanol Exposure 

  C. elegans were seeded onto the ethanol infused E. coli plates to ensure chronic exposure 

was attained. Worms were exposed to concentrations of 200 mM, 300 mM, and 400 mM ethanol. 

Once dried, a single parent worm was transferred to fresh ethanol infused plates every 48 hours 

as their progeny begin to hatch and grow in the media. Frequent transfers ensured that the parent 

worm would not be confused with the progeny and that the progeny do not produce their own 

progeny. Progeny were then counted and totaled for each concentration evaluated. 

Acute Ethanol Exposure 

  Plates were infused with ethanol as described above. Worms were treated with 300 mM 

and 500 mM ethanol. The plates were set to dry for 2 hours at room temperature to prevent the 

ethanol from evaporating or drying out Once set, 15 worms were placed on the 3 plate 
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concentrations, 5 worms per treatment for 15 minutes. The worms were then transferred to fresh 

NGM plates without any alcohol to determine the effects of short-term ethanol exposure. 

Progeny was then counted and compared to the results of chronic ethanol exposure.  

Progeny Count 

   Following exposure to ethanol, worms were placed in a 20°C incubator for 48 hours, 

checked at 24-hour intervals. After 48 hours, the parent worms will have laid eggs that have 

either hatched into L1 larvae or remained unhatched. C. elegans with progeny on their plates 

were transferred to a fresh ethanol infused NGM plate to keep them exposed to ethanol. Upon 

hatching, the worm plates without the parent worm were placed under a dissecting microscope 

and counted. Each larva was individually vacuumed off the plates to ensure that progeny was not 

counted multiple times. Unhatched eggs did not count towards the progeny count. Progeny was 

counted for 5 – 7 days. Prism was used to determine statistical significance (Welsh’s t-test). 

DAPI Staining 

  4’,6’-diamidino-2-phenylindole (DAPI) was used to stain the germline nuclei. A hatch 

off was performed on both N2 and GC1413 C. elegans strains, to ensure the worms were all at 

the same stage of their life cycle. A hatch off is a procedure in which the various stages of C. 

elegans are washed off the NGM plates using M9 buffer leaving behind unhatched eggs behind. 

This ensures the C. elegans will all grow at the same rate. These worms were incubated at 20°C 

for 2 to 3 hours until most of the eggs had hatched. The worms were washed off the plate using 

M9 Buffer (3 g KH2PO4, 6 g Na2HPO4, 0.5 g NaCl, 1 g NH4Cl, 1 L diH2O) (US Biological, 

Salem MA) and placed onto 0 mM and 300 mM plates. The plates were checked under a 

dissecting microscope to ensure that there were at least 200 worms present per plate. The worms 

were incubated at 20°C and checked periodically for approximately 60 hours or until they 
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reached L4 stage of development. The worms were then washed off again using M9 Buffer. The 

worms were placed into low retention Eppendorf tubes (Fisher Scientific, Pittsburgh PA). The 

worms were centrifuged for 2 minutes at 1000 rpm. The M9 supernatant was carefully removed 

and 750 μL of 100% ethanol was added directly to the pellet and incubated at room temperature 

for 3 minutes. The worms were centrifuged at 1000 rpm for 2 minutes and the ethanol 

supernatant was removed. A drop of VectaShield Antifade Mounting Media+DAPI (Vector 

Labs, Burlingame CA) was added to the Eppendorf tubes and were kept at 4°C, until ready to be 

imaged under a confocal microscope. 

Alcohol Reagent Assay 

  In order to confirm that the worms were absorbing ethanol, an alcohol reagent assay was 

performed using MedTest Dx (Pointe Scientific, Canton MI). The sample size was at least 300 

worms per treatment concentration. The worms were kept on ethanol infused NGM plates until 

they reached the L4 stage of development. The L4 C. elegans were washed off using M9 buffer 

and placed into low retention Eppendorf tubes. The worms were centrifuged for 1 minute at 1000 

rpm to form a pellet and the supernatant was extracted and discarded. If the worms were not 

assessed right away, they were placed in -80°C until they were ready to be used in the assay. If 

frozen, the specimens were thawed on ice. Each concentration (0 mM, 300 mM, 500 mM) had 1 

mL of alcohol reagent added to the Eppendorf tubes. Negative controls vials contained NaCl, and 

positive control vials contained 100% ethanol. The Eppendorf tubes were incubated for 5 

minutes at 30°C. Prior to transferring the worms from tubes to well plates, the tubes were 

vortexed for 10 seconds to resuspend the pellet. The specimens were transferred to a 12-well 

plate and the absorbance was read at 340 nm. 

Microscopic Imaging of Worm Locomotion 
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  Individual treated worms were located on the 35 mm plates by scanning at low 

magnification on a Tritech Research dissecting microscope. For the control sample, five 

untreated L4 larvae were placed on a fresh E. coli lawn and allowed to roam the media for 

approximately 5 minutes. Images were taken using an AmScope digital camera attached to the 

eye piece of the dissecting microscope. This procedure was repeated for the treatment 

concentrations of 200 mM, 300 mM, and 400 mM.  

Confocal Laser Scanning Microscopy (CLSM) 

  Slides were scanned using a 10X objective lens to locate the worms mounted on the slide. 

Once the worm was identified and the vulva located the magnification was switched to a 40X oil 

immersion lens. Samples were excited with a 405 nm LED laser. Image stacks were collected by 

setting the top and bottom points of the volume and optimizing the slice overlap. Images were 

collected at 8 microseconds dwell time per pixel at a 1388x1040 resolution. Once collected, the 

image stacks were visualized and rendered as maximum intensity projections using the Fiji 

ImageJ software (PUT FIJI WEBSITE). 

Image Processing for Germline Cell Count using ImageJ 

   The images generated by the CLSM were analyzed using the image J software. 

The image stack was initialized under the cell counter setting. The images were analyzed using 

the cell counter setting under the type four marker. The germline stem cells were counted across 

each image stack to confirm their state and development. The markers were tallied and saved as 

a separate cell counter image. 
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Results

Treatment with Increasing Ethanol Doses Produces a Disinhibitory Effect on L4 C. elegans 

  Figure 5 shows the disinhibitory effect of increasing concentrations of ethanol on L4 C. 

elegans. The sinusoidal motion of untreated worms can be seen in Figure 5A as traces within the 

medium. This natural movement is the same whether in water or in soil. Figure 5B shows the 

change in the sinusoidal pattern with worms treated with 200 mM ethanol. The effect on 

coordination is observable approximately three minutes following treatment. At this 

concentration, the sinusoidal motion is present but occurs at a lower amplitude and higher 

frequency than untreated worms. The trails left behind the L4 stage larvae in Figure 5B show the 

lack of coordination when compared to Figure 5A. After approximately three minutes of ethanol 

exposure at 300 mM ethanol (Fig. 5C) larval sinusoidal motion decreased to a low amplitude and 

low frequency. Eventually, the body no longer produced any movement, but the head of the L4 

larva continued to move forward and backwards but the worm was unable to continuing moving 

through the media. Approximately one minute after treatment with 400 mM ethanol (Figure 5D) 

the worms folded and cease moving.  
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Figure 5. These images were taken from videos which demonstrate the disinhibitory effects of 

ethanol on the L4 nematodes. A. The control C. elegans demonstrate standard sinusoidal motion 

across the NGM agar at the time stamps of 0, 3, 8 and 18 seconds. B. At 200 mM, the C. elegans 

can still produce a sinusoidal motion; however, the waveform is modified from the control which 

is noted at the given time stamps. C. At 300 mM, the worms can no longer produce a sinusoidal 

motion; the images used at the given time stamps indicate lack of motion as the worm did not 

move. D. At 400 mM, the C. elegans folded onto themselves and ceased movement as noted by 

the time stamps, which was done by moving the plate around. Images were taken on a dissecting 

microscope using AmScope by Andrea Zegarra.  
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Treatment with Increasing Concentrations of Ethanol Causes a Decline in Progeny 

Production in L4 C. elegans 

  The L4 nematodes were treated with 0 mM (control) 200 mM, 300 mM, and 400 mM 

concentrations of ethanol for the entirety of each experiment. The period from day 1 to day 3 

allows the L4 larvae to further develop into fully grown adults, lay eggs and for those eggs to 

hatch. Progeny were counted on days 4, 5, 6 and 7. In order to ensure hatchlings were not 

counted more than once, a vacuum suction method was used; the hatchlings were suctioned off 

and counted. Only viable offspring were used to determine the total progeny count from the L4 

stage to adulthood. Figure 6 shows the number of progeny for increasing concentrations of 

ethanol. The 0 mM concentration resulted in an average progeny count of 233 hatchlings. As the 

concentrations were increased, the progeny production decreased. At 200 mM, the developing C. 

elegans produced an average of 188 hatchlings. The concentrations of 300 mM and 400 mM 

produced the least amount of progeny across all the experimental trials with an average of 92 and 

20 hatchlings, respectively. When comparing the various concentrations to the control, both 300 

mM and 400 mM had a statistically significant difference.  
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Figure 6: Chronic ethanol exposure was assessed across 6 experiment replicates at various 

concentration (0 mM, 200 mM, 300 mM, and 400 mM). After chronic exposure, the C. elegans 

had reduced fertility represented by the number of progeny throughout their life span. M Both 

300 mM and 400 mM had a statistically significant difference with of p-values 0.0026 and 

0.0002, respectively.  

-50

0

50

100

150

200

250

300

Control 200mM 300mM 400mM

P
r

o
g

e
n

y

EtOH Concentration

Figure 6: Total Progeny at Multiple Concentrations

Control

200mM

300mM

400mM***

**



www.manaraa.com

25 
 

Ethanol Absorbance Assay Demonstrates Ethanol Consumption in L4 C. elegans 

  In order to determine their level of intoxication, 300 larvae were hatched and grown to 

the L4 stage of development. These C. elegans were exposed to ethanol at 0 mM (control), 300 

mM and 500 mM concentrations for 10 to 12 hours, or until the L4 larvae reached the young 

adult phase. Ethanol absorbance was measured using the MedTest Dx assay. This assay 

determines the concentration of ethanol present in the C. elegans relative to concentration of 

alcohol reagent absorbed. The negative control was an NaCl solution, and the positive control 

was 100% ethanol. As shown in Figure 7, the average absorbance reading for the NaCl and 

100% , versus 100% ethanol were 0.0 AU and 2.27 AU, respectively. The controls had an 

average absorbance reading of 0.047 AU. The absorbance readings for the 300 mM and 500 mM 

were 1.03 AU and 1.67 AU, respectively. A significant difference was seen between the negative 

control and the 300 mM and 500 mM concentrations. This data, along with images showing 

disinhibition (see Figure 5) serves as confirmation that L4 C. elegans were intoxicated and 

consuming ethanol infused within the E. coli throughout these experiments.  
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Figure 7: Two concentrations were used to determine the ethanol content that the L4 larva 

consumed. After 12 hours of ethanol exposure, the assay shows the absorbance for the young 

adult worms increasing when compared to the control group of NaCl and the absorbance reading 

of 0 mM ethanol C. elegans. Welch’s t-test identified a p-value of 0.0016 for 0 mM, 0.0305 for 

300 mM and 0.0498 for the 500 mM concentration. 
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Chronic Exposure to 300 mM Ethanol Directly Affects the Mitotic Germline 

   Twelve L4 larvae were treated with 300 mM ethanol over a two-day period which 

allowed the larvae to reach the adult stage. The adults' nuclei were stained with DAPI and 

viewed by confocal laser scanning microscopy (CLSM). Figure 8 shows the effect of ethanol 

exposure on the germline. Figures 8B and 8D show the method for counting mitotic nuclei. 

Mitotic nuclei were marked with purple as they were counted. Figures 8A and 8B show the adult 

germline of control worms (0 mM). Figures 8C and 8D show the effects of 300 mM ethanol on 

the mitotic germline.  

  As shown in Figure 9, control worms had an average mitotic cell count of 175. The C. 

elegans treated with 300 mM ethanol showed a decrease in the average number of mitotic 

germline cells relative to controls (110) Using Welch’s t-test for analyzing both conditions, it 

was determined that there was a significant difference of P<0.0001. 
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Figure 8. A and B indicate the germline of 0mM C. elegans along with the number of cells 

within on stack pinned in purple. While C and D indicate the germline of 300 mM C. elegans 

under the same conditions revealing less mitotic cells present after chronic ethanol consumption. 
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Figure 9: At 0 mM, the C. elegans had an average mitotic germline of 175 cells. At 300 mM, the 

mitotic germline average dropped to 110 Using Welch’s t-test for analyzing both conditions, it 

was determined that there was a significant difference of P<0.0001. 
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Treatment with 300 mM Promotes a Decline in Progeny Production in L4 GC1373/GC1374 C. 

elegans 

  Chronic exposure was evaluated in 4 replicates with 12 C. elegans per trial. GC1373 is a 

mutant strain for the glp-1/Notch pathway and contains an effective RNAi which is restricted to 

the germline. GC1373 contains a reduction of function mutation which enables them to produce 

half the number of adult germline progenitors, which leads to less overall progeny production. In 

C. elegans, glp-1/notch activity prevents germline stem cell differentiation. However, GC1374 is 

the mutant counterpart containing only a reduction of function mutation.  

  GC1373/GC1374 L4 C. elegans were treated with 0 mM, and 300 mM ethanol. The 

progeny was counted on days 5 and 7. The parent worm was observed on day 6 and transferred 

to fresh agar plates if there was a considerable number of eggs present on the plate. The number 

of progeny was determined across the replicates at the end of the 7th day. Figure 10 shows the 

effect of chronic ethanol exposure on progeny count. Control GC1373 mutants had an average of 

44 hatchlings, while the worms exposed to 300 mM of ethanol produced an average of 14 

hatchlings.  

  As shown in Figure 11, GC1374 C. elegans produced an average of 153 progeny, far 

greater than GC1373, but still less than the average wild-type C. elegans amount. The treated 

GC1374 C. elegans produced an average of 75 progeny. Although there was a difference in the 

amount of progeny, there was no statistical significance between the 0 mM and 300 mM 

concentrations. 
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Figure 10: Chronic exposure on the notch mutant was done in four replicates with twelve worms 

per trial. In the mutant strain, GC1373 a Welch’s t-test determined it to be more prone to a 

decline in progeny production; due to the reduction of function mutation with a statistically 

significant difference of p-value=0.037.  
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Figure 11: In the GC1374 strain, although there is a difference in amount of progeny, there is no 

statistical significance between the 0 mM and 300 mM concentrations of GC1374 with a p-value 

of 0.093.  
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Discussion

Ethanol Disinhibition Responses in Wild Type L4 C. elegans 

  In the current work, we demonstrated that increasing concentrations of ethanol induced 

increasing disinhibition of locomotion in C. elegans. Previous studies found C. elegans exposed 

to a concentration of 500 mM ethanol on semi-moist agar plates, demonstrated a gradual decline 

in locomotion, feeding and egg-laying behaviors; eventually, leading to immobility after 30 

minutes (Davies et al., 2015). The high dose resulted in an internal ethanol concentration 

relevant to human consumption and disinhibition in rodent models (Alaimo et al., 2012). Topper 

and colleagues (2014) demonstrated that C. elegans exposed to ethanol through an immersive 

method, in which the worm was immersed in ethanol and NGM solution, displayed behaviors 

rarely observed in water. The study showed that ethanol induced fits of crawling and other 

crawling associated behaviors such as foraging and reversals, which require coordinated motion. 

  Topper concluded that ethanol should be viewed as specifically disinhibiting crawling 

behaviors. Ethanol consumption was determined using an ethanol absorbance which read the 

concentrations of ethanol within the C. elegans after chronic ethanol consumption (Davies et al., 

2004). Upon exposure to increasing doses of ethanol, the L4 C. elegans exhibit disinhibition 

effects within 5 minutes of ethanol exposure. As the C. elegans consumed the ethanol, the 

sinusoidal motion decreased and caused changes in the amplitude and frequency of the 

movement. The results found in our study confirm that of previous studies which interpret 

disinhibition effects strictly maintained to crawling. The amount of ethanol given to the C. 

elegans determines the effect disinhibition has on the crawling behavior. 

Ethanol Impact on Wild Type L4 Mitotic Germline 

  Previous studies have reported that low doses of ethanol have the capability to elongate 
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the life span of L1 larva (Castro et al., 2012). C. elegans exposed to ethanol from the gastrula 

until larval stage 4 (L4) develop up to 1122 differently altered genes (Patananan et al., 2015). 

This indicates that different pathways are activated depending on the ethanol concentration and 

the stage at which the C. elegans are exposed. Garaycoechea and colleagues (2018) determined 

endogenous aldehydes are a ubiquitous source of DNA damage that impair blood production. 

They determined some damage occurs within the hematopoietic stem cells which affects other 

aspects such as aging and mutagenesis. It has been previously reported that ethanol can lead to 

genomic instability in rodent models. Garaycoechea examined hematopoietic cells for evidence 

of broken chromosomes. Hematopoietic stem cells mutated by aldehydes were functionally 

compromised and displayed myeloid bias (Garaycoechea et al, 2018). Ethanol exposure alters 

gene expression and methylation profiles in embryonic stem cells (Liu et al., 2009).  

  Due to the undifferentiated nature of the mitotic germ cells, they are more sensitive to 

ethanol (Chastain and Sarkar, 2017). The germline is the only part of the C. elegans cell lineage 

that proliferates for the life of the organism. The maintenance of germ cell proliferation is 

accomplished through interactions with a distal tip cell as mentioned previously. Ethanol induces 

changes in the epigenome of sperm in exposed male animals (Chastain and Sarkar, 2017).  

 In C. elegans, a finite number of sperm are produced early in the C. elegans lifespan; in 

most other animals, including humans, sperm are produced throughout the lifespan with a finite 

number of eggs being produced. The current work found that chronic ethanol consumption 

commencing at the L4 stage of life decreased the amount of mitotic germ cells. When comparing 

the untreated C. elegans to the 300 mM treated L4 larva, the germline cells were greater than the 

treated. The potential effect ethanol had on the germline coincides with the results demonstrated 

within the hatchlings of the various concentrations. As the concentration of ethanol increased, 
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the amount of germline cells decreased along with the number of viable hatchlings.  

Ethanol and the impact on Wild Type and Mutant Strain Progeny Production 

  Previous studies have found delays in onset egg-laying upon ethanol exposure (Yu et al., 

2011). C. elegans on average lay up to 300 eggs in their lifetimes. Yu and colleagues determined 

that long-term ethanol exposure reduced the number of eggs laid in the life cycle of the C. 

elegans; the lowest amount being that of 21 eggs. At the highest concentration in the study, Yu 

found that 40% of the worms either became infertile or developed bags, which is a condition in 

which the offspring hatches within the body of the parent. The data suggested chronic ethanol 

exposure impairs the egg-laying process. The current work supports this hypothesis, and our data 

demonstrates that chronic ethanol exposure effects the germline of the C. elegans and not just the 

general characteristic of egg-laying. Our study found that as ethanol concentrations increased, 

the number of offspring the C. elegans decreased. 

 This factor was also noted in mutant strains GC1373 and GC1374. GC1373 is the mutant 

strain containing a reduction of function glp-1 (Roy et al., 2018). Glp-1 engages in several 

processes within C. elegans such as multicellular organism development, negative regulation of 

stem cell differentiation and positive regulation of cell population proliferation (Arnaboldi, 

2021). This is due to the GC1373 is ability of reduce a function which causes differentiation of 

all germ stem cells (Roy et al., 2018). Due to the mutation present within GC1373, the mutant 

strain produced less than half of the progeny when compared to the GC1374, which only 

contains a reduction of function mutation. The chronic ethanol consumption led the mutant strain 

to decrease the number progeny produced versus the untreated counterpart.  
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Conclusion

  The goal of the current work was to determine the effect of chronic ethanol consumption 

on the C. elegans germline. Our focus was to measure the number of progeny produced in the 

life cycle of the C. elegans along with the total amount of germ cells present after chronic 

ethanol exposure. Our results indicate that in wild-type worms chronic ethanol exposure results 

in a decrease in eggs laid and a decrease in germline stem cells.  

  Additionally, chronic ethanol exposure at the wild type and mutant L4 larva stage has a 

statistically significant effect on the number of cells produces and progeny laid. The mutant 

strains containing a reduction of function mutation had a lower progeny count when exposed to 

chronic ethanol. Our results indicate that in the mutant strains chronic ethanol exposure 

decreases the ability of the parent worm to lay eggs. 

Future Work

 Future work would include acute exposure to determine the likelihood of a C. elegans 

recovering from the effects of ethanol which could lead to the analysis of acute versus chronic 

exposure. Further studies could determine the effect of chronic exposure to ethanol from the L1 

stage on the development of adult animals. This would allow us to follow the development of 

animals from hatchling to progeny production, the L4 molt, mid-L4, late L4, adult molts and first 

round of progeny production. Studies using SLO-1 mutant strain could determine the effect of 

chronic ethanol exposure on the fertility of the mutant animals. SLO-1 shown to be essential for 

ethanol mediated behavioral phenotypes including rate of egg laying. The studies would 

demonstrate facilitate our understanding of the damage caused to the germline by chronic 

ethanol consumption. 
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Appendix 

Image Permission

The images for Figures 1, 2, and 3 were reproduced with permission from WormAtlas. 
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